The iron ML notebook
search
⌘Ctrlk
The iron ML notebook
  • The iron data science notebook
  • ML & Data Science
    • Frequent Questions
    • Statistics
      • The basics
      • Distributions
      • Sampling
      • IQR
      • Z-score
      • F-statistic
      • Outliers
      • The bayesian basis
      • Statistic vs Parameter
      • Markov Monte Carlo Chain
    • ML Techniques
    • Machine Learning Algorithms
    • Computer Vision
  • Related Topics
    • Intro
    • Python
    • SQL
    • Combinatorics
    • Data Engineering Questions
    • Distributed computation
  • Algorithms & data structures
    • Array
    • Binary
    • Tree
    • Matrix
    • Linked List
    • String
    • Interval
    • Graph
    • Heap
    • Dynamic Programming
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. ML & Data Science

Statistics

circle-info

This section contains the essential statistical concepts a good data scientist must know. Interesting related resources:

  • Statistics by SJSU - Free course (Udacity)arrow-up-right

  • Intro to Inferential Statistics - Free course (Udacity)arrow-up-right

  • Intro to Descriptive Statistics - Free course (Udacity)arrow-up-right

  • Intro to Statistics - Free course from Programming Nanodegree (Udacity)arrow-up-right

  • Probabilistic Programming and Bayesian Methods for Hackers (GitHub Notebooks)arrow-up-right

  • Machine Learning. A Probabilistic Perspective - K.P. Murphy (Book)

PreviousRecommendation systems methodschevron-leftNextThe basicschevron-right

Last updated 6 years ago