Can Sum
Brute force
def can_sum_brute(target: int, numbers: list[int]) -> bool:
"""
Time complexity: O(N^M)
Time complexity will depend on two factors:
- how big is value of target (M)
- and the number of items in numbers (N).
In the algorigthm, we explore all the available solutions by iterating
the available "numbers" to decrease the value of the target.
Then, the branching factor will be N and, in the worst scenario,
we will explore these M options up to M times.
Space complexity: O(M)
The height of the recursion tree will depend on target value.
Thus, it will depend on M.
"""
if target == 0:
return True
if target < 0:
return False
for number in numbers:
current = target - number
result = can_sum_brute(current, numbers)
if result:
return result
return False
Memoization
from typing import Optional
def can_sum_memo(
target: int,
numbers: list[int],
index: Optional[dict] = None
) -> bool:
"""
Time complexity: O(N*M)
Worst case scenario, it will need to check every combination of
every value of N while decreasing M (worst scenario will be by 1).
Space complexity: O(M)
The height of the recursion tree will depend on target value.
Thus, it will depend on M.
"""
if index is None:
index = {}
if target in memo.keys():
return index[target]
if target == 0:
return True
if target < 0:
return False
for number in numbers:
current = target - number
result = can_sum_memo(current, numbers, memo)
if result:
index[target] = result
return index[target]
index[target] = False
return False
Tabulation
def can_sum_tab(target_sum: int, numbers: list[int]) -> bool:
"""
Time complexity: O(N*M)
Space complexity: O(M)
"""
table = [False] * (target_sum + 1)
table[0] = True
for i in range(target_sum + 1):
for number in numbers:
index = i + number
if index <= target_sum:
table[index] = (
table[index] if table[index] else table[i]
)
return table[-1]
Last updated