bars
The iron ML notebook
search
circle-xmark
⌘
Ctrl
k
copy
Copy
chevron-down
ML & Data Science
chevron-right
ML Techniques
Feature Normalization
hashtag
0 - 1 Normalization
x
j
[
i
]
=
x
j
[
i
]
−
m
i
n
(
x
j
)
m
a
x
(
x
j
)
−
m
i
n
(
x
j
)
x_j^{[i]} = \frac{x_j^{[i]} - min(x_j) }{max(x_j) - min(x_j)}
x
j
[
i
]
=
ma
x
(
x
j
)
−
min
(
x
j
)
x
j
[
i
]
−
min
(
x
j
)
hashtag
Z-score Normalization
circle-check
More recommended when using DL methods (due to the zero-centering)
x
j
[
i
]
=
x
j
[
i
]
−
m
e
a
n
(
x
j
)
s
t
d
(
x
j
)
x_j^{[i]} = \frac{x_j^{[i]} - mean(x_j) }{std(x_j)}
x
j
[
i
]
=
s
t
d
(
x
j
)
x
j
[
i
]
−
m
e
an
(
x
j
)
Previous
Selection functions
chevron-left
Next
Cross-validation
chevron-right
Last updated
1 year ago
0 - 1 Normalization
Z-score Normalization