Covariance vs Correlation Matrix
Overview
Covariance Matrix
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
plt.rcParams['figure.figsize'] = (12, 8)
mean = 0
std = 1
num_samples = 500
x = np.random.normal(mean, std, num_samples)
y = np.random.normal(mean, std, num_samples)
X = np.vstack((x, y)).T # Join both arrays and transpose
# X = np.stack(arrays=[x, y], axis=1) # Equivalent transformation
plt.scatter(X[:, 0], X[:, 1])
plt.title('Generated Data')
plt.axis('equal');

Correlation Matrix

Last updated