The iron ML notebook
  • The iron data science notebook
  • ML & Data Science
    • Frequent Questions
      • Discriminative vs Generative models
      • Supervised vs Unsupervised learning
      • Batch vs Online Learning
      • Instance-based vs Model-based Learning
      • Bias-Variance Tradeoff
      • Probability vs Likelihood
      • Covariance vs Correlation Matrix
      • Precision vs Recall
      • How does a ROC curve work?
      • Ridge vs Lasso
      • Anomaly detection methods
      • How to deal with imbalanced datasets?
      • What is "Statistically Significant"?
      • Recommendation systems methods
    • Statistics
      • The basics
      • Distributions
      • Sampling
      • IQR
      • Z-score
      • F-statistic
      • Outliers
      • The bayesian basis
      • Statistic vs Parameter
      • Markov Monte Carlo Chain
    • ML Techniques
      • Pre-process
        • PCA
      • Loss functions
      • Regularization
      • Optimization
      • Metrics
        • Distance measures
      • Activation Functions
      • Selection functions
      • Feature Normalization
      • Cross-validation
      • Hyperparameter tuning
      • Ensemble methods
      • Hard negative mining
      • ML Serving
        • Quantization
        • Kernel Auto-Tuning
        • NVIDIA TensorRT vs ONNX Runtime
    • Machine Learning Algorithms
      • Supervised Learning
        • Support Vector Machines
        • Adaptative boosting
        • Gradient boosting
        • Regression algorithms
          • Linear Regression
          • Lasso regression
          • Multi Layer Perceptron
        • Classification algorithms
          • Perceptron
          • Logistic Regression
          • Multilayer Perceptron
          • kNN
          • Naive Bayes
          • Decision Trees
          • Random Forest
          • Gradient Boosted Trees
      • Unsupervised learning
        • Clustering
          • Clustering metrics
          • kMeans
          • Gaussian Mixture Model
          • Hierarchical clustering
          • DBSCAN
      • Cameras
        • Intrinsic and extrinsic parameters
    • Computer Vision
      • Object Detection
        • Two-Stage detectors
          • Traditional Detection Models
          • R-CNN
          • Fast R-CNN
          • Faster R-CNN
        • One-Stage detectors
          • YOLO
          • YOLO v2
          • YOLO v3
          • YOLOX
        • Techniques
          • NMS
          • ROI Pooling
        • Metrics
          • Objectness Score
          • Coco Metrics
          • IoU
      • MOT
        • SORT
        • Deep SORT
  • Related Topics
    • Intro
    • Python
      • Global Interpreter Lock (GIL)
      • Mutability
      • AsyncIO
    • SQL
    • Combinatorics
    • Data Engineering Questions
    • Distributed computation
      • About threads & processes
      • REST vs gRPC
  • Algorithms & data structures
    • Array
      • Online Stock Span
      • Two Sum
      • Best time to by and sell stock
      • Rank word combination
      • Largest subarray with zero sum
    • Binary
      • Sum of Two Integers
    • Tree
      • Maximum Depth of Binary Tree
      • Same Tree
      • Invert/Flip Binary Tree
      • Binary Tree Paths
      • Binary Tree Maximum Path Sum
    • Matrix
      • Set Matrix Zeroes
    • Linked List
      • Reverse Linked List
      • Detect Cycle
      • Merge Two Sorted Lists
      • Merge k Sorted Lists
    • String
      • Longest Substring Without Repeating Characters
      • Longest Repeating Character Replacement
      • Minimum Window Substring
    • Interval
    • Graph
    • Heap
    • Dynamic Programming
      • Fibonacci
      • Grid Traveler
      • Can Sum
      • How Sum
      • Best Sum
      • Can Construct
      • Count Construct
      • All Construct
      • Climbing Stairs
Powered by GitBook
On this page

Was this helpful?

  1. Algorithms & data structures
  2. Tree

Same Tree

PreviousMaximum Depth of Binary TreeNextInvert/Flip Binary Tree

Last updated 3 years ago

Was this helpful?

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
        return self.isSameRecursiveEqual(p, q)
        
    def isSameTreeDoubleIteration(self, p: TreeNode, q: TreeNode) -> bool:
        """
        Time complexity: O(N) since each node is visited exactly once.

        Space complexity: O(log(N)) in the best case of completely balanced 
        tree and O(N) in the worst case of completely unbalanced tree, 
        to keep a deque.
        """
        
        left_values = []
        right_values = []
        
        self._extract_node_values_from_tree(p, left_values)    
        self._extract_node_values_from_tree(q, right_values)
        
        return left_values == right_values    
    
    def _extract_node_values_from_tree(self, node: TreeNode, values):        
        if node is None: 
            values.append(None)
            return
        
        values.append(node.val)
        self._extract_node_values_from_tree(node.left, values)
        self._extract_node_values_from_tree(node.right, values)                
        
    def isSameRecursiveEqual(self, p: TreeNode, q: TreeNode) -> bool:
        """
        Time complexity: O(N), where N is a number of nodes in the tree, 
        since one visits each node exactly once.

        Space complexity: O(log(N)) in the best case of completely balanced 
        tree and O(N) in the worst case of completely unbalanced tree, 
        to keep a recursion stack.
        """
        
        if p is None and q is None:
            return True
        elif p is None or q is None:
            return False
        
        return (
            p.val == q.val 
            and self.isSameRecursiveEqual(p.left, q.left) 
            and self.isSameRecursiveEqual(p.right, q.right)
        )
    
        
    
https://leetcode.com/problems/same-tree/